ALGAE BIOFERTILIZER: A Climate-Smart Solution for Healthy Soil & Improved Crop Yields

Rohan Samaratunga

Supervisors: Prof Megh Mallavarapu and Dr Abinandan Sudharsanam

Background

- Soil health in Australia is declining lower yields, poorer soil, higher costs and vulnerable to climate change.
- Algae are nature's soil helpers they add life, improve fertility, and store carbon.

Healthy Soils Increases soil microbial health, enzyme, and nutrient availability,

soil aggregation

Saves money*
*Best case scenario
(with nutrients

sourced from waste)

Bigger Harvest Increases crop growth and yield

Climate friendly
Help to store carbon
and potential reduce
greenhouse gas
emissions

Benefits of algae biofertilizer

Mitigation

Reduces use of inorganic fertilizer

Resilience

Improves resilience to soil structure, carbon, and nutrient availability

Productivity

Boosts crop growth and yield

Project Plan

Phase 1
Laboratory

Phase 2
Green house

Phase 3
Field trial

Expected outcome

Production of biomass & pot experiments

Identify effectiveness of algae consortia for the sustainable improvement of crop productivity & soil health under Australian climatic conditions

