# ReflectGAN: Modeling Vegetation Effects for Soil Carbon Estimation from Satellite Imagery

## Dristi Datta

Supervisors: Prof. Manoranjan Paul, Prof. Manzur Murshed, Prof. Shyh Wei Teng, and Prof. Leigh M. Schmidtke

## Existing Problem

- Vegetation contaminates soil reflectance in satellite imagery
- Spectral mixing hides true soil signals, degrading SOC accuracy
- Traditional methods discard vegetated samples or fail to correct them
- Existing GANs estimate abundance, not reconstruct soil reflectance

### **Our Solution**

- Propose ReflectGAN to reconstruct bare soil reflectance from vegetated pixels
- Learn spectral transformation between vegetated and bare soil reflectance
- Preserve spectral consistency using residual learning and conditioning
- Improve SOC estimation without discarding valuable vegetated data

### Proposed ReflectGAN Architecture



## **Key Findings**

Comparison of different soil reflectance types against ReflectGAN-reconstructed reflectance, illustrating how the proposed method transforms vegetated reflectance into bare soil reflectance under varying vegetation densities:







(a) Lightly vegetated soil reflectance (NDVI = 0.25) (b) Moderately vegetated soil reflectance (NDVI = 0.42) (c) Highly vegetated soil reflectance (NDVI = 0.83)

#### SOC Estimation Under Vegetation: Results (Landsat 8, RF Model)

| Method                 | R <sup>2</sup> | RMSE | RPD  |
|------------------------|----------------|------|------|
| Index-based Correction | -0.09          | 6.90 | 0.95 |
| PMM-SU                 | 0.40           | 6.95 | 1.45 |
| Pix2Pix GAN            | 0.16           | 6.16 | 1.09 |
| CycleGAN               | 0.08           | 7.10 | 1.02 |
| ReflectGAN (Proposed)  | 0.53           | 3.93 | 2.11 |

**Dataset & Code** 



Full Paper













