PHD STUDENT PRESENTATIONS SESSION

Darren West Turning data into decisions: getting your sensors to pay their way University of Tasmania

Xiangyu LiuMicrobial responses to soil compaction as a measure of soilGriffith Universityresilience in sugarcane cropping system

Md Zahangir Hossain Biochar and nutrient interactions in soil

University of Newcastle

TURNING DATA INTO DECISIONS: GETTING YOUR SENSORS TO PAY THEIR WAY

Darren West

PhD Candidate

Tasmanian Institute of Agriculture, University of Tasmania

Wednesday, 3rd April 2019

Performance through collaboration

THE LANDSCAPE:

- Food security:- Global challenge
- Strong Australian agricultural industry:
 - around 3% of GDP in 2016-17 $^{\circ}$
- Water intensive industry:
 - Agriculture uses 62% of water nationally
 - 91% of that is used for irrigation in 2016-17^{*}
- Improved irrigation practice needs a good understanding of the soil

THE APPROACH:

- Avoiding the need for expensive and time-consuming soil analysis
- Installing off-the-shelf soil sensor technology in a range of soils and climates
- Using techniques similar to those used for predicting weather patterns and ocean flows
- Using data from the sensor to learn about the soil it is installed in
- Keen to discuss any soil moisture data sets that may be able to be shared with me

THE OUTCOMES:

- Decision support tools, not just data
- Adaptive, easy to use technology that can incorporate change
- Increased adoption of precision irrigation practices
- Increased water usage efficiency/reduced costs
- Determination of soil parameters that can be used for further data modelling (e.g. APSIM, etc.)

THANK YOU

darren.west@utas.edu.au

This research is supported through an Australian Government Research Training Program Scholarship and funding from the CRC for High Performance Soils under project 2.2.02 'Smart' Soil Sensors.

MICROBIAL RESPONSES TO SOIL COMPACTION AS A MEASURE OF SOIL RESILIENCE IN SUGARCANE CROPPING SYSTEM

Xiangyu Liu Supervisors: Professor Chengrong Chen Professor Lukas Van Zwieten Dr Mehran Rezaei Rashti

Griffith University April 2019

Performance through collaboration

SOIL COMPACTION

Soil compaction is one of the main problems associated with agricultural industries: **worldwide 68 million hectares** of land are estimated to be compacted due to vehicular traffic alone (Hamza and Anderson 2005).

 In Australia, the decreased agricultural production due to soil compaction has a price tag of approximately AUD \$850 million per year (Walsh 2002).

COMPACTED SOIL

NO MOISTURE NO AIR

SON LOO Performance through collaboration

THE RESPONSES OF SOIL MICROBE TOWARD ENVIRONMENTAL DISTURBANCES

REFERENCE

HAMZA, M. AND W. ANDERSON (2005). "SOIL COMPACTION IN CROPPING SYSTEMS: A REVIEW OF THE NATURE, CAUSES AND POSSIBLE SOLUTIONS." SOIL AND TILLAGE RESEARCH 82(2): 121-145.

WALSH, P. (2002). "NEW METHOD YIELDS A WORM'S EYE VIEW." FARMING AHEAD 132: 16-18.

THANKS FOR YOUR TIME!

BIOCHAR AND NUTRIENT INTERACTIONS IN SOIL

Md Zahangir Hossain PhD Candidate

SOLS

Performance through collaboration

3 April 2019

BIOCHAR

Soil benefits (nutrients)

- Improves crop yields (liming effects)
 - May be a source of PTE & other elements

Lopez-capel et al (2016)

OBJECTIVES OF THIS PROJECT

No.	Objective	Soil CRC Milestone
1	synthesis and characterise of biochar	3.1.3 synthesis of innovative fertilizer products
2	nutrient enrichment of selected biochar	
3	determine the nutrient releasing efficiency of biochar	3.1.4 test and validate innovative fertilizer products
4	evaluate the targetted bioavailability of nutrients	

RESEARCH FRAMEWORK

SOIL Performance through collaboration

EXPECTED OUTPUT

- Identification of targetted biochar feedstocks
- Synthesis of nutrient enriched biochar
- Development of Carbon-based novel fertilizer products

Biosolid + Urea

ORAL AND POSTER PRESENTATION

2018 **MINE REHAB** CONFERENCE + BEST PRACTICE ECOLOGICAL REHABILITATION OF MINED LANDS 2nd INTERNATIONAL CONFERENCE ON IORESOURCES, ENERGY, INVIRONMENT, and MATERIALS TECHNOLOGY

Technology Nexus for the Resonance of Nature and Humans JUNE 10(SUN) - 13(WED), 2018 Daemyung Resort, Hongcheon, Gangwon Province, Korea

AUSTRALIA NEW ZEALAND BIOCHAR CONFERENCE 2018

NATIONAL SOILS CONFERENCE Canberra 18-23 November 2018

GLOBAL CLEANUP CONGRESS INDIA 2018

ACKNOWLEDGEMENT

Supervisers:

Professor Nanthi Bolan

Dr. Mezbaul Bahar

Prof. Scott Donne

Dr. Binoy Sarkar

Ms Pascal Bundy Cliftleigh, NSW

Dr. Dane Lamb, GCER
Dr. Michael Crawford, CEO, Soil CRC
GCER staffs & students
Parents and family members

